NUK - logo
E-resources
Peer reviewed
  • Radiation promotes invasive...
    Cui, Y-H; Suh, Y; Lee, H-J; Yoo, K-C; Uddin, N; Jeong, Y-J; Lee, J-S; Hwang, S-G; Nam, S-Y; Kim, M-J; Lee, S-J

    Oncogene, 10/2015, Volume: 34, Issue: 42
    Journal Article

    Despite ionizing radiation (IR) is being widely used as a standard treatment for lung cancer, many evidences suggest that IR paradoxically promotes cancer malignancy. However, its molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that exposure to fractionated radiation (2 Gy per day for 3 days) induces the secretion of granulocyte-colony-stimulating factor (G-CSF) that has been commonly used in cancer therapies to ameliorate neutropenia. Intriguingly, radiation-induced G-CSF promoted the migratory and invasive properties by triggering the epithelial-mesenchymal cell transition (EMT) in non-small-cell lung cancer cells (NSCLCs). By irradiation, G-CSF was upregulated transcriptionally by β-catenin/TCF4 complex that binds to the promoter region of G-CSF as a transcription factor. Importantly, irradiation increased the stability of β-catenin through the activation of PI3K/AKT (phosphatidylinositol 3-kinase/AKT), thereby upregulating the expression of G-CSF. Radiation-induced G-CSF is recognized by G-CSFR and transduced its intracellular signaling JAK/STAT3 (Janus kinase/signal transducers and activators of transcription), thereby triggering EMT program in NSCLCs. Taken together, our findings suggest that the application of G-CSF in cancer therapies to ameliorate neutropenia should be reconsidered owing to its effect on cancer progression, and G-CSF could be a novel therapeutic target to mitigate the harmful effect of radiotherapy for the treatment of NSCLC.