NUK - logo
E-resources
Peer reviewed Open access
  • Combi-CRISPR: combination o...
    Yoshimi, Kazuto; Oka, Yuichiro; Miyasaka, Yoshiki; Kotani, Yuko; Yasumura, Misato; Uno, Yoshihiro; Hattori, Kosuke; Tanigawa, Arisa; Sato, Makoto; Oya, Manami; Nakamura, Kazuhiro; Matsushita, Natsuki; Kobayashi, Kazuto; Mashimo, Tomoji

    Human Genetics, 02/2021, Volume: 140, Issue: 2
    Journal Article

    CRISPR-Cas9 are widely used for gene targeting in mice and rats. The non-homologous end-joining (NHEJ) repair pathway, which is dominant in zygotes, efficiently induces insertion or deletion (indel) mutations as gene knockouts at targeted sites, whereas gene knock-ins (KIs) via homology-directed repair (HDR) are difficult to generate. In this study, we used a double-stranded DNA (dsDNA) donor template with Cas9 and two single guide RNAs, one designed to cut the targeted genome sequences and the other to cut both the flanked genomic region and one homology arm of the dsDNA plasmid, which resulted in 20–33% KI efficiency among G0 pups. G0 KI mice carried NHEJ-dependent indel mutations at one targeting site that was designed at the intron region, and HDR-dependent precise KIs of the various donor cassettes spanning from 1 to 5 kbp, such as EGFP , mCherry , Cre , and genes of interest, at the other exon site. These findings indicate that this combinatorial method of NHEJ and HDR mediated by the CRISPR-Cas9 system facilitates the efficient and precise KIs of plasmid DNA cassettes in mice and rats.