NUK - logo
E-resources
Full text
Peer reviewed
  • Encapsulated additive nucle...
    Costa, Diogo Ribeiro

    Journal of nuclear materials, 2023
    Journal Article

    UN-UO 2 composites are considered an accident tolerant fuel (ATF) option for light water reactors (LWRs). However, the interactions between UN and UO2 and the low oxidation resistance of UN limit the application of such ATF composite concept in LWRs. A potential alternative to overcome these issues is encapsulating the UN fuel before sintering. Based on our recent studies, molybdenum and tungsten are selected to encapsulate UN spheres. In this article, different coating techniques, such as powder coating, chemical vapour deposition (CVD), and physical vapour deposition (PVD), were developed and applied to encapsulate surrogates and UN spheres. Encapsulated UN-UO 2 pellets fabricated by the spark plasma sintering (SPS) method (1773 K, 80 MPa) were characterised by complementary techniques and evaluated against their oxidation resistance in air up to 973 K. The results show inert, dense, and non-uniform Mo and W layers of about 28 μm and 32 μm, respectively, obtained by the powder coating method. PVD provided uniform and dense layers of Mo and W of approximately 1.0 μm and 4.0 μm, respectively, but with cracks at the interface with the surrogate spheres. PVD-Mo onto UN spheres shows a dense and well-adhered layer of about 0.5 μm but with W contamination from the previous coating. The PVD-W and CVD-W results and the oxidation experiments will be in the final version of this manuscript.