NUK - logo
E-resources
Full text
Peer reviewed
  • Study on isotropic design o...
    Zhang, Jing; Xie, Suchao; Jing, Kunkun; Wang, Hao; Li, Tao; He, Guandi

    Composite structures, 08/2024, Volume: 342
    Journal Article

    The energy absorption characteristics of the triply periodic minimal surfaces (TPMS) structure may vary significantly due to the anisotropy under multi-directional loading conditions. To address this issue effectively, an isotropic design strategy based on a precise elastic modulus compensation mechanism for different TPMS lattices is proposed. This strategy involves combining a TPMS lattice with a high elastic modulus in the axial direction with another TPMS lattice featuring a low elastic modulus in the same direction, leveraging the complementary effects of elastic modulus to achieve isotropy. The relationship between the relative density and the elastic modulus of six types of TPMS lattices is analyzed through homogenization simulation and finite element analysis. Mathematical expressions are then fitted using the Gibson-Ashby model. Additionally, a Kriging model is employed to establish the relationship between the Zener anisotropy values of hybrid TPMS structures and the relative density of their component lattices. This enables the precise complementary effect of elastic modulus in different TPMS lattice structures, providing a widely applicable selection rule for achieving isotropy. Using the Primitive-Diamond hybrid lattice as an example, the Zener anisotropy index after hybridization is reduced by 65.2 % and 31.37 % compared to single Primitive and Diamond lattices, respectively.