NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Cejas, Paloma; Li, Lewyn; O'Neill, Nicholas K; Duarte, Melissa; Rao, Prakash; Bowden, Michaela; Zhou, Chensheng W; Mendiola, Marta; Burgos, Emilio; Feliu, Jaime; Moreno-Rubio, Juan; Guadalajara, Héctor; Moreno, Víctor; García-Olmo, Damián; Bellmunt, Joaquim; Mullane, Stephanie; Hirsch, Michelle; Sweeney, Christopher J; Richardson, Andrea; Liu, X Shirley; Brown, Myles; Shivdasani, Ramesh A; Long, Henry W

    Nature medicine, 06/2016, Letnik: 22, Številka: 6
    Journal Article

    Extensive cross-linking introduced during routine tissue fixation of clinical pathology specimens severely hampers chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) analysis from archived tissue samples. This limits the ability to study the epigenomes of valuable, clinically annotated tissue resources. Here we describe fixed-tissue chromatin immunoprecipitation sequencing (FiT-seq), a method that enables reliable extraction of soluble chromatin from formalin-fixed paraffin-embedded (FFPE) tissue samples for accurate detection of histone marks. We demonstrate that FiT-seq data from FFPE specimens are concordant with ChIP-seq data from fresh-frozen samples of the same tumors. By using multiple histone marks, we generate chromatin-state maps and identify cis-regulatory elements in clinical samples from various tumor types that can readily allow us to distinguish between cancers by the tissue of origin. Tumor-specific enhancers and superenhancers that are elucidated by FiT-seq analysis correlate with known oncogenic drivers in different tissues and can assist in the understanding of how chromatin states affect gene regulation.