NUK - logo
E-viri
Recenzirano Odprti dostop
  • STAT3 phosphorylation at Se...
    Lin, Wei-Hsin; Chang, Yi-Wen; Hong, Min-Xiang; Hsu, Te-Cheng; Lee, Ko-Chuan; Lin, Che; Lee, Jia-Lin

    Oncogene, 01/2021, Letnik: 40, Številka: 4
    Journal Article

    Epithelial-mesenchymal transition (EMT)/mesenchymal-epithelial transition (MET) processes are proposed to be a driving force of cancer metastasis. By studying metastasis in bone marrow-derived mesenchymal stem cell (BM-MSC)-driven lung cancer models, microarray time-series data analysis by systems biology approaches revealed BM-MSC-induced signaling triggers early dissemination of CD133 /CD83 cancer stem cells (CSCs) from primary sites shortly after STAT3 activation but promotes proliferation towards secondary sites. The switch from migration to proliferation was regulated by BM-MSC-secreted LIF and activated LIFR/p-ERK/pS727-STAT3 signaling to promote early disseminated cancer cells MET and premetastatic niche formation. Then, tumor-tropic BM-MSCs circulated to primary sites and triggered CD151 /CD38 cells acquiring EMT-associated CSC properties through IL6R/pY705-STAT3 signaling to promote tumor initiation and were also attracted by and migrated towards the premetastatic niche. In summary, STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates the EMT-MET switch within the distinct molecular subtypes of CSCs to complete the metastatic process.