NUK - logo
E-viri
Celotno besedilo
Odprti dostop
  • Lesar, Žiga; Bohak, Ciril; Marolt, Matija

    arXiv.org, 01/2024
    Paper, Journal Article

    Depth perception in volumetric visualization plays a crucial role in the understanding and interpretation of volumetric data. Numerous visualization techniques, many of which rely on physically based optical effects, promise to improve depth perception but often do so without considering camera movement or the content of the volume. As a result, the findings from previous studies may not be directly applicable to crowded volumes, where a large number of contained structures disrupts spatial perception. Crowded volumes therefore require special analysis and visualization tools with sparsification capabilities. Interactivity is an integral part of visualizing and exploring crowded spaces, but has received little attention in previous studies. To address this gap, we conducted a study to assess the impact of different rendering techniques on depth perception in crowded volumes, with a particular focus on the effects of camera movement. The results show that depth perception considering camera motion depends much more on the content of the volume than on the chosen visualization technique. Furthermore, we found that traditional rendering techniques, which have often performed poorly in previous studies, showed comparable performance to physically based methods in our study.