NUK - logo
E-viri
Celotno besedilo
Odprti dostop
  • Hull, Charles L H; Plambeck, Richard L; Kwon, Woojin; Bower, Geoffrey C; Carpenter, John M; Crutcher, Richard M; Fiege, Jason D; Franzmann, Erica; Hakobian, Nicholas S; Heiles, Carl; Houde, Martin; A Meredith Hughes; Lamb, James W; Looney, Leslie W; Marrone, Daniel P; Matthews, Brenda C; Pillai, Thushara; Pound, Marc W; Rahman, Nurur; Sandell, Göran; Stephens, Ian W; Tobin, John J; Vaillancourt, John E; Volgenau, N H; Wright, Melvyn C H

    arXiv.org, 05/2014
    Paper, Journal Article

    We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30 star-forming cores and 8 star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20" resolution polarization maps from single-dish submillimeter telescopes. Here we do not attempt to interpret the detailed B-field morphology of each object. Rather, we use average B-field orientations to derive conclusions in a statistical sense from the ensemble of sources, bearing in mind that these average orientations can be quite uncertain. We discuss three main findings: (1) A subset of the sources have consistent magnetic field (B-field) orientations between large (~20") and small (~2.5") scales. Those same sources also tend to have higher fractional polarizations than the sources with inconsistent large-to-small-scale fields. We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows appear to be randomly aligned with B-fields; although, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5" resolution we see the so-called "polarization hole" effect, where the fractional polarization drops significantly near the total intensity peak. All data are publicly available in the electronic edition of this article.