NUK - logo
E-viri
Recenzirano Odprti dostop
  • A Cationic Polymer That Sho...
    Rank, Leslie A; Walsh, Naomi M; Liu, Runhui; Lim, Fang Yun; Bok, Jin Woo; Huang, Mingwei; Keller, Nancy P; Gellman, Samuel H; Hull, Christina M

    Antimicrobial agents and chemotherapy, 10/2017, Letnik: 61, Številka: 10
    Journal Article

    Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of and , reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of , including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies.