NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Decreased soil microbial bi...
    Dempster, D. N.; Gleeson, D. B.; Solaiman, Z. M.; Jones, D. L.; Murphy, D. V.

    Plant and soil, 05/2012, Letnik: 354, Številka: 1-2
    Journal Article

    Background and Aims Biochar has been shown to aid soil fertility and crop production in some circumstances. We investigated effects of the addition of Jarrah (Eucalyptus marginata) biochar to a coarse textured soil on soil carbon and nitrogen dynamics. Methods Wheat was grown for 10 weeks, in soil treated with biochar (0, 5, or 25 t ha−1) in full factorial combination with nitrogen (N) treatments (organic N, inorganic N, or control). Samples were analysed for plant biomass, soil microbial biomass carbon (MBC) and nitrogen (MBN), N mineralisation, CO2 evolution, community level physiological profiles (CLPP) and ammonia oxidising bacterial community structure. Results MBC significantly decreased with biochar addition while MBN was unaltered. Net N mineralisation was highest in control soil and significantly decreased with increasing addition of biochar. These findings could not be attributed to sorption of inorganic N to biochar. CO2 evolution decreased with 5 t ha−1 biochar but not 25 t ha−1. Biochar addition at 25 t ha−1 changed the CLPP, while the ammonia oxidising bacterial community structure changed only when biochar was added with a N source. Conclusion We conclude that the activity of the microbial community decreased in the presence of biochar, through decreased soil organic matter decomposition and N mineralisation which may have been caused by the decreased MBC.