NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Highly Stretchable and High...
    Teo, Mei Ying; Kim, Nara; Kee, Seyoung; Kim, Bong Seong; Kim, Geunjin; Hong, Soonil; Jung, Suhyun; Lee, Kwanghee

    ACS applied materials & interfaces, 01/2017, Letnik: 9, Številka: 1
    Journal Article

    Stretchable conductive materials have received great attention owing to their potential for realizing next-generation stretchable electronics. However, the simultaneous achievement of excellent mechanical stretchability and high electrical conductivity as well as cost-effective fabrication has been a significant challenge. Here, we report a highly stretchable and highly conducting polymer that was obtained by incorporating an ionic liquid. When 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM TCB) was added to an aqueous conducting polymer solution of poly­(3,4-ethylenedioxythiophene):poly­(styrenesulfonate) (PEDOT:PSS), it was found that EMIM TCB acts not only as a secondary dopant but also as a plasticizer for PEDOT:PSS, resulting in a high conductivity of >1000 S cm–1 with stable performance at tensile strains up to 50% and even up to 180% in combination with the prestrained substrate technique. Consequently, by exploiting the additional benefits of high transparency and solution-processability of PEDOT:PSS, we were able to fabricate a highly stretchable, semitransparent, and wholly solution-processed alternating current electroluminescent device with unimpaired performance at 50% strain by using PEDOT:PSS/EMIM TCB composite films as both bottom and top electrodes.