NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Abnormal Stokes Profiles of...
    Kondrashova, N. N.

    Kinematics and physics of celestial bodies, 07/2018, Letnik: 34, Številka: 4
    Journal Article

    The thermodynamic parameters and parameters of the photospheric magnetic field in the region of chromospheric dual flows in the vicinity of a small pore in the active region NOAA 11024 are presented. The dual chromospheric flows that appeared in the region of abnormal Stokes V profiles of the photospheric lines were associated with the emergence of a new small-scale magnetic flux of positive polarity. Semiempirical photospheric models were obtained by inversion using the SIR program (Stokes Inversion based on Response functions) 42. Each model contains two components: two thin magnetic flux tubes of different polarity. The magnetic flux has a negative polarity in the first component and positive in the second. The Stokes profiles of the photospheric lines Fe I λ 630.15, 630.25, and 630.35 nm and Ti I λ 630.38 nm from the spectropolarimetric observations with the French–Italian telescope THEMIS (Tenerife, Spain) were used for modeling. The altitudinal dependences of the temperature, line of sight velocity, inclination angle of the magnetic field vector, and azimuth angle in the tubes, as well as the values of the magnetic field strength and macroturbulent velocity, are obtained. The time variations in all parameters of the photosphere are revealed. The new magnetic flux emerged in the region of mixed polarities and was accompanied by the heating of the photosphere and chromosphere. The inferred flux tube models show the temperature enhancement by 400 K in the upper photospheric layers relative to the quiet-Sun model temperature. They indicate a complex, inhomogeneous small-scale structure of the magnetic field and the velocity field. The magnetic field strength in the tubes varies from 0.03 to 0.13 T during the period under consideration. The inclination angles of the magnetic field vector and the azimuth angles strongly differ in magnetic flux tubes and vary in time. The line-of-sight velocity does not exceed 2 km/s. The downflows in the lower layers of the photosphere and the upflows in the upper layers dominate in the first component of the models. In the second component of the model, the material in the upper photosphere is lifted. The macroturbulent velocity in most cases exceeds its value for the unperturbed photosphere. The velocity is greater in the second component of the models. The emergence of the new magnetic flux could lead to the magnetic reconnection and occurrence of a microflare.