NUK - logo
E-viri
Recenzirano Odprti dostop
  • Ultrafast X-ray Auger probi...
    McFarland, B K; Farrell, J P; Miyabe, S; Tarantelli, F; Aguilar, A; Berrah, N; Bostedt, C; Bozek, J D; Bucksbaum, P H; Castagna, J C; Coffee, R N; Cryan, J P; Fang, L; Feifel, R; Gaffney, K J; Glownia, J M; Martinez, T J; Mucke, M; Murphy, B; Natan, A; Osipov, T; Petrović, V S; Schorb, S; Schultz, Th; Spector, L S; Swiggers, M; Tenney, I; Wang, S; White, J L; White, W; Gühr, M

    Nature communications, 06/2014, Letnik: 5, Številka: 1
    Journal Article

    Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation--X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C-O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.