NUK - logo
E-viri
Recenzirano Odprti dostop
  • Identification of Major Dio...
    Suzuki, Go; Tue, Nguyen M; van der Linden, Sander; Brouwer, Abraham; van der Burg, Bart; van Velzen, Martin; Lamoree, Marja; Someya, Masayuki; Takahashi, Shin; Isobe, Tomohiko; Tajima, Yuko; Yamada, Tadasu K; Takigami, Hidetaka; Tanabe, Shinsuke

    Environmental science & technology, 12/2011, Letnik: 45, Številka: 23
    Journal Article

    We evaluated the applicability of combining in vitro bioassays with instrument analyses to identify potential endocrine disrupting pollutants in sulfuric acid-treated extracts of liver and/or blubber of high trophic-level animals. Dioxin-like and androgen receptor (AR) antagonistic activities were observed in Baikal seals, common cormorants, raccoon dogs, and finless porpoises by using a panel of rat and human cell-based chemical-activated luciferase gene expression (CALUX) reporter gene bioassays. On the other hand, no activity was detected in estrogen receptor α (ERα)-, glucocorticoid receptor (GR)-, progesterone receptor (PR)-, and peroxisome proliferator-activated receptor γ2 (PPARγ2)-CALUX assays with the sample amount applied. All individual samples (n = 66) showed dioxin-like activity, with values ranging from 21 to 5500 pg CALUX-2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent (TEQ)/g-lipid. Because dioxins are expected to be strong contributors to CALUX-TEQs, the median theoretical contribution of dioxins calculated from the result of chemical analysis to the experimental CALUX-TEQs was estimated to explain up to 130% for all the tested samples (n = 54). Baikal seal extracts (n = 31), but not other extracts, induced AR antagonistic activities that were 8–150 μg CALUX-flutamide equivalent (FluEQ)/g-lipid. p,p′-DDE was identified as an important causative compound for the activity, and its median theoretical contribution to the experimental CALUX-FluEQs was 59% for the tested Baikal seal tissues (n = 25). Our results demonstrate that combining in vitro CALUX assays with instrument analysis is useful for identifying persistent organic pollutant-like compounds in the tissue of wild animals on the basis of in vitro endocrine disruption toxicity.