NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • High energy electron sinter...
    Schaible, M.J.; Johnson, R.E.; Zhigilei, L.V.; Piqueux, S.

    Icarus (New York, N.Y. 1962), 03/2017, Letnik: 285
    Journal Article

    •The PacMan thermal anomalies on the icy Saturnian moons have been explained through radiation-induced sintering of grains.•The differing strength of the anomalies on each of the moons is related to the varying importance of the resurfacing mechanisms.•Changes caused by radiation processing can be used to constrain grain sizes and porosites of the icy regoliths. The so-called ‘PacMan’ features on the leading hemispheres of the icy Saturnian moons of Mimas, Tethys and Dione were initially identified as anomalous optical discolorations and subsequently shown to have greater thermal inertia than the surrounding regions. The shape of these regions matches calculated deposition contours of high energy plasma electrons moving opposite to the moon’s orbital direction, thus suggesting that electron interactions with the grains produce the observed anomalies. Here, descriptions of radiation-induced diffusion processes are given, and various sintering models are considered to calculate the rate of increase in the contact volume between grains in an icy regolith. Estimates of the characteristic sintering timescale, i.e. the time necessary for the thermal inertia to increase from that measured outside the anomalous regions to that within, are given for each of the moons. Since interplanetary dust particle (IDP) impact gardening and E-ring grain infall would be expected to mix the regolith and obscure the effects of high energy electrons, sintering rates are compared to rough estimates of the impact-induced resurfacing rates. Estimates of the sintering timescale determined by extrapolating laboratory measurements are below ∼0.03 Myr, while the regolith renewal timescales are larger than ∼0.1 Myr, thus indicating that irradiation by the high energy electrons should be sufficient to form stable thermal anomalies. More detailed models developed for sintering of spherical grains are able to account for the radiation-induced anomalies on Mimas and Tethys only if the regoliths on those bodies are relatively compact and composed of small (≲ 5 µm) grains or grain aggregates, and/or the grains are highly non-spherical with surface defect densities in the inter-grain contact regions that are much higher than expected for crystalline water ice grains at thermal equilibrium. These results are consistent with regolith thermal conductivity models which can only be reconciled with spacecraft observations if the contacts between grains are assumed to have much lower thermal conductance than predicted for idealized grains. The strength of the anomalies on Tethys and Dione appear to be limited by E-ring grain infall, while on Mimas IDP gardening limits the strength of the anomaly. The smaller flux of more deeply penetrating high energy (>1 MeV) electrons on Dione can account for the small thermal inertia differences measured there. Determining regolith sintering rates and the corresponding effect on thermal conductivity can, in principle, provide an independent constraint on the regolith grain geometries and exposure timescales for icy bodies.