NUK - logo
E-viri
Recenzirano Odprti dostop
  • Polypropylene/Graphene and ...
    Huang, Chien-Lin; Lou, Ching-Wen; Liu, Chi-Fan; Huang, Chen-Hung; Song, Xiao-Min; Lin, Jia-Horng

    Applied sciences, 12/2015, Letnik: 5, Številka: 4
    Journal Article

    This study aims to examine the properties of composites that different carbon materials with different measurements can reinforce. Using a melt compounding method, this study combines polypropylene (PP) and graphene nano-sheets (GNs) or carbon fiber (CF) to make PP/GNs and PP/CF conductive composites, respectively. The DSC results and optical microscopic observation show that both GNs and CF enable PP to crystalize at a high temperature. The tensile modulus of PP/GNs and PP/CF conductive composites remarkably increases as a result of the increasing content of conductive fillers. The tensile strength of the PP/GNs conductive composites is inversely proportional to the loading level of GNs. Containing 20 wt% of GNs, the PP/GNs conductive composites have an optimal conductivity of 0.36 S/m and an optimal EMI SE of 13 dB. PP/CF conductive composites have an optimal conductivity of 10−6 S/m when composed of no less than 3 wt% of CF, and an optimal EMI SE of 25 dB when composed of 20 wt% of CF.