NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • The Atlas of Morocco: A Plu...
    Lanari, R.; Faccenna, C.; Natali, C.; Şengül Uluocak, E.; Fellin, M. G.; Becker, T. W.; Göğüş, O. H.; Youbi, N.; Clementucci, R.; Conticelli, S.

    Geochemistry, geophysics, geosystems : G3, June 2023, 2023-06-00, 20230601, 2023-06-01, Letnik: 24, Številka: 6
    Journal Article

    We explore the connections between crustal shortening, volcanism, and mantle dynamics in the Atlas of Morocco. In response to compressional forces and strain localization, this intraplate orogen has evolved far from convergent plate margins. Convective effects, such as lithospheric weakening and plume‐related volcanism, contributed in important ways to the building of high topography. We seek to better understand how crustal and mantle processes interacted during the Atlas' orogeny by combining multiple strands of observations, including new and published data. Constraints on crustal and thermal evolution are combined with new analyses of topographic evolution, petrological, and geochemical data from the Anti‐Atlas volcanic fields, and a simple numerical model of the interactions among crustal deformation, a mantle plume, and volcanism. Our findings substantiate that: (a) crustal deformation and exhumation accelerated during the middle/late Miocene, contemporaneous with the onset of volcanism; (b) volcanism has an anorogenic signature with a deep source; (c) a dynamic mantle upwelling supports the high topography. We propose that a mantle plume and the related volcanism weakened the lithosphere beneath the Atlas and that this favored the localization of crustal shortening along pre‐existing structures during plate convergence. This convective‐tectonic sequence may represent a general mechanism for the modification of continental plates throughout the thermo‐chemical evolution of the supercontinental cycle. Key Points Crustal thickening is limited and cannot account for the topography elevation of the Atlas system Resumption of volcanism is contemporaneous with the acceleration of crustal deformation and topography growing The erosion and weakening of the lower lithosphere, as a consequence of mantle plume, may enhance crustal deformation and exhumation