NUK - logo
E-viri
Recenzirano Odprti dostop
  • IL-17-mediated antifungal d...
    Trautwein-Weidner, K; Gladiator, A; Nur, S; Diethelm, P; LeibundGut-Landmann, S

    Mucosal immunology, 03/2015, Letnik: 8, Številka: 2
    Journal Article

    Interleukin-17 (IL-17)-mediated immunity has emerged as a crucial host defense mechanism against Candida albicans infections in mucosal tissues and the skin. The precise mechanism by which the IL-17 pathway prevents fungal outgrowth has not been clarified. Neutrophils are critical for limiting fungal dissemination and IL-17 is generally thought to act by regulating neutrophil mobilization and trafficking to the site of infection. Using a mouse model of oropharyngeal candidiasis (OPC), we found that strikingly the IL-17 pathway is not required for the neutrophil response to C. albicans. Mice deficient for the IL-17 receptor subunits IL-17 receptor A (IL-17RA) or IL-17RC or mice depleted of IL-17A and IL-17F exhibited a normal granulocyte colony-stimulating factor (G-CSF) and CXC-chemokine response and displayed no defect in neutrophil recruitment or function. Instead, the inability of these mice to clear the fungus was associated with a selective defect in the induction of antimicrobial peptides (AMPs) in the epithelium that resulted in persistent fungal colonization. Importantly, this antifungal mechanism of IL-17A and IL-17F did not extend to the closely related family member IL-17C. Together, these data uncouple IL-17-dependent effector mechanisms from the neutrophil response and reveal a compartmentalization of the antifungal defense in the oral mucosa providing a new understanding of IL-17-mediated mucosal immunity against C. albicans.