NUK - logo
E-viri
Recenzirano Odprti dostop
  • Effect of Carbon Modificati...
    Taziwa, R.; Meyer, E. L.; Sideras-Haddad, E.; Erasmus, R. M.; Manikandan, E.; Mwakikunga, B. W.

    International journal of photoenergy, 01/2012, Letnik: 2012
    Journal Article

    Carbon-modified titanium dioxide nanoparticles (C:TiO2 NPs) have been synthesized by ultrasonic nebulizer spray pyrolysis (USP) and pneumatic spray pyrolysis (PSP) techniques. HRTEM on the NPs shows difference in lattice spacing in the NP structures prepared by the two methods—2.02 Å for the USP NPs and an average of 3.74 Å for the PSP NPs. The most probable particle sizes are 3.11 nm and 5.5 nm, respectively. Raman spectroscopy supported by FTIR confirms the TiO2 polymorph to be anatase with the intense phonon frequency at 153 cm−1 blue-shifted from 141 cm−1 ascribed to both carbon doping and particle size. A modified phonon confinement model for nanoparticles has been used to extract phonon dispersion and other parameters for anatase for the first time. Electronic measurements show “negative conductance” at some critical bias voltage, which is characteristic of n-type conductivity in the carbon-doped TiO2 NPs as confirmed by the calculated areas under the I-V curves, a property suited for solar cell applications. Practical solar cells built from carbon-doped TiO2 electrodes show up to 1.5 times improvement in efficiency compared to pure TiO2 electrodes of similar construction.