NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Room-temperature polariton ...
    Forrest, S. R; Kéna-Cohen, S

    Nature photonics, 06/2010, Letnik: 4, Številka: 6
    Journal Article

    The optical properties of organic semiconductors are almost exclusively described using the Frenkel exciton picture. In this description, the strong Coulombic interaction between an excited electron and the charged vacancy it leaves behind (a hole) is automatically taken into account. If, in an optical microcavity, the exciton-photon interaction is strong compared to the excitonic and photonic decay rates, a second quasiparticle, the microcavity polariton, must be introduced to properly account for this coupling. Coherent, laser-like emission from polaritons has been predicted to occur when the ground-state occupancy of polaritons left angle bracketngs right angle bracket, reaches 1 (ref. 3). This process, known as polariton lasing, can occur at thresholds much lower than required for conventional lasing. Polaritons in organic semiconductors are highly stable at room temperature, but to our knowledge, there has as yet been no report of nonlinear emission from these structures. Here, we demonstrate polariton lasing at room temperature in an organic microcavity composed of a melt-grown anthracene single crystal sandwiched between two dielectric mirrors.