NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Regulating the Coordination...
    Gong, Yun‐Nan; Jiao, Long; Qian, Yunyang; Pan, Chun‐Yang; Zheng, Lirong; Cai, Xuechao; Liu, Bo; Yu, Shu‐Hong; Jiang, Hai‐Long

    Angewandte Chemie International Edition, February 10, 2020, Letnik: 59, Številka: 7
    Journal Article

    The general synthesis and control of the coordination environment of single‐atom catalysts (SACs) remains a great challenge. Herein, a general host–guest cooperative protection strategy has been developed to construct SACs by introducing polypyrrole (PPy) into a bimetallic metal–organic framework. As an example, the introduction of Mg2+ in MgNi‐MOF‐74 extends the distance between adjacent Ni atoms; the PPy guests serve as N source to stabilize the isolated Ni atoms during pyrolysis. As a result, a series of single‐atom Ni catalysts (named NiSA‐Nx‐C) with different N coordination numbers have been fabricated by controlling the pyrolysis temperature. Significantly, the NiSA‐N2‐C catalyst, with the lowest N coordination number, achieves high CO Faradaic efficiency (98 %) and turnover frequency (1622 h−1), far superior to those of NiSA‐N3‐C and NiSA‐N4‐C, in electrocatalytic CO2 reduction. Theoretical calculations reveal that the low N coordination number of single‐atom Ni sites in NiSA‐N2‐C is favorable to the formation of COOH* intermediate and thus accounts for its superior activity. A host–guest cooperative protection strategy has been developed for constructing single‐atom catalysts (SACs), extending the range of available precursors from nitrogenous to non‐nitrogenous MOFs. The obtained Ni‐SACs (NiSA‐Nx‐C; x=2, 3, 4) at different pyrolysis temperatures feature varying nitrogen coordination numbers. The best of these catalysts, NiSA‐N2‐C, shows superior activity and selectivity in CO2 electroreduction.