NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Coupling Cobalt Phthalocyan...
    Kong, Xin; Liu, Guiyang; Tian, Suan; Bu, Shuyu; Gao, Qili; Liu, Bin; Lee, Chun‐Sing; Wang, Pengfei; Zhang, Wenjun

    Small (Weinheim an der Bergstrasse, Germany), December 22, 2022, Letnik: 18, Številka: 51
    Journal Article

    Metallic phthalocyanines (MePcs) have shown their potential as catalysts for CO2 reduction reactions (CO2RR). However, their low conductivity, easy agglomeration, and poor stability enslave the further progress of their CO2RR applications. Herein, an integrated heterogeneous molecular catalyst through anchoring CoPc molecules on 3D nitrogen‐doped vertical graphene arrays (NVG) on carbon cloth (CC) is reported. The CoPc‐NVG/CC electrodes exhibit superior performance for reducing CO2 to CO with a Faradic efficiency of above 97.5% over a wide potential range (99% at an optimal potential), a very high turnover frequency of 35800 h−1, and decent stability. It is revealed that NVG interacts with CoPc to form highly efficient channels for electron transfer from NVG to CoPc, facilitating the Co(II)/Co(I) redox of CO2 reduction. The strong coupling effect between NVG and CoPc molecules not only endows CoPc with high intrinsic activity for CO2RR, but also enhances the stability of electrocatalysts under high potentials. This work paves an efficient approach for developing high‐performance heterogeneous catalysts by using rationally designed 3D integrated graphene arrays to host molecular metallic phthalocyanines so as to ameliorate their electronic structures and engineer stable active sites. Three‐dimensional nitrogen‐doped vertical graphene arrays (NVG) are designed and utilized as scaffolds to anchor highly dispersed CoPc molecules to obtain an integrated heterogeneous molecular catalyst (CoPc‐NVG/CC). The strong coupling effect between NVG with CoPc not only endows CoPc with high intrinsic activity for CO2RR but also enhances the stability of electrocatalysts under high potentials.