NUK - logo
E-viri
Recenzirano Odprti dostop
  • Axion dark matter experimen...
    Bartram, C.; Braine, T.; Cervantes, R.; Crisosto, N.; Du, N.; Leum, G.; Rosenberg, L. J.; Rybka, G.; Yang, J.; Bowring, D.; Chou, A. S.; Khatiwada, R.; Sonnenschein, A.; Wester, W.; Carosi, G.; Woollett, N.; Duffy, L. D.; Goryachev, M.; McAllister, B.; Tobar, M. E.; Boutan, C.; Jones, M.; LaRoque, B. H.; Oblath, N. S.; Taubman, M. S.; Clarke, John; Dove, A.; Eddins, A.; O’Kelley, S. R.; Nawaz, S.; Siddiqi, I.; Stevenson, N.; Agrawal, A.; Dixit, A. V.; Gleason, J. R.; Jois, S.; Sikivie, P.; Solomon, J. A.; Sullivan, N. S.; Tanner, D. B.; Lentz, E.; Daw, E. J.; Perry, M. G.; Buckley, J. H.; Harrington, P. M.; Henriksen, E. A.; Murch, K. W.

    Physical review. D, 02/2021, Letnik: 103, Številka: 3
    Journal Article

    Searching for axion dark matter, the ADMX Collaboration acquired data from January to October 2018, over the mass range 2.81–3.31  μeV, corresponding to the frequency range 680–790 MHz. Using an axion haloscope consisting of a microwave cavity in a strong magnetic field, the ADMX experiment excluded Dine-Fischler-Srednicki-Zhitnisky (DFSZ) axions at 90% confidence level and 100% dark matter density over this entire frequency range, except for a few gaps due to mode crossings. This paper explains the full ADMX analysis for run 1B, motivating analysis choices informed by details specific to this run.