NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Observation of Hydrodynamic...
    Schlossberg, D. J.; Grim, G. P.; Casey, D. T.; Moore, A. S.; Nora, R.; Bachmann, B.; Benedetti, L. R.; Bionta, R. M.; Eckart, M. J.; Field, J. E.; Fittinghoff, D. N.; Gatu Johnson, M.; Geppert-Kleinrath, V.; Hartouni, E. P.; Hatarik, R.; Hsing, W. W.; Jarrott, L. C.; Khan, S. F.; Kilkenny, J. D.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meaney, K. D.; Munro, D. H.; Nagel, S. R.; Pak, A.; Patel, P. K.; Spears, B. K.; Volegov, P. L.; Young, C. V.

    Physical review letters, 09/2021, Letnik: 127, Številka: 12
    Journal Article

    Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.