NUK - logo
E-viri
Recenzirano Odprti dostop
  • Qutrit Randomized Benchmarking
    Morvan, A.; Ramasesh, V. V.; Blok, M. S.; Kreikebaum, J. M.; O’Brien, K.; Chen, L.; Mitchell, B. K.; Naik, R. K.; Santiago, D. I.; Siddiqi, I.

    Physical review letters, 05/2021, Letnik: 126, Številka: 21
    Journal Article

    Ternary quantum processors offer significant potential computational advantages over conventional qubit technologies, leveraging the encoding and processing of quantum information in qutrits (three-level systems). To evaluate and compare the performance of such emerging quantum hardware it is essential to have robust benchmarking methods suitable for a higher-dimensional Hilbert space. We demonstrate extensions of industry standard randomized benchmarking (RB) protocols, developed and used extensively for qubits, suitable for ternary quantum logic. Using a superconducting five-qutrit processor, we find an average single-qutrit process infidelity of 3.8×10−3. Through interleaved RB, we characterize a few relevant gates, and employ simultaneous RB to fully characterize crosstalk errors. Finally, we apply cycle benchmarking to a two-qutrit CSUM gate and obtain a two-qutrit process fidelity of 0.85. Our results present and demonstrate RB-based tools to characterize the performance of a qutrit processor, and a general approach to diagnose control errors in future qudit hardware.