NUK - logo
E-viri
Recenzirano Odprti dostop
  • Role of Microtearing Turbul...
    Jian, X; Holland, C; Candy, J; Belli, E; Chan, V; Garofalo, A M; Ding, S

    Physical review letters, 11/2019, Letnik: 123, Številka: 22
    Journal Article

    We report on the first direct comparisons of microtearing turbulence simulations to experimental measurements in a representative high bootstrap current fraction (f_{BS}) plasma. Previous studies of high f_{BS} plasmas carried out in DIII-D with large radius internal transport barriers (ITBs) have found that, while the ion energy transport is accurately reproduced by neoclassical theory, the electron transport remains anomalous and not well described by existing quasilinear transport models. A key feature of these plasmas is the large value of the normalized pressure gradient, which is shown to completely stabilize conventional drift-wave and kinetic ballooning mode instabilities in the ITB, but destabilizes the microtearing mode. Nonlinear gyrokinetic simulations of the ITB region performed with the cgyro code demonstrate that the microtearing modes are robustly unstable and capable of driving electron energy transport levels comparable to experimental levels for input parameters consistent with the experimental measurements. These simulations uniformly predict that the microtearing mode fluctuation and flux spectra extend to significantly shorter wavelengths than the range of linear instability, representing significantly different nonlinear dynamics and saturation mechanisms than conventional drift-wave turbulence, which is also consistent with the fundamental tearing nature of the instability. The predicted transport levels are found to be most sensitive to the magnetic shear, rather than the temperature gradients more typically identified as driving turbulent plasma transport.