NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • The Photoinduced Triplet of...
    Kowalczyk, Radoslaw M; Schleicher, Erik; Bittl, Robert; Weber, Stefan

    Journal of the American Chemical Society, 09/2004, Letnik: 126, Številka: 36
    Journal Article

    The photogenerated triplet states of riboflavin and flavin mononucleotide (FMN) have been examined by time-resolved electron paramagnetic resonance (EPR) spectroscopy at low temperature (T = 80 K). Because of the high time resolution of the utilized EPR instrumentation, the triplets are for the first time observed in the nonequilibrated electron-spin polarized state and not in their equilibrated forms with the population of the triplet sublevels governed by Boltzmann distribution. The electron-spin polarization pattern directly reflects the anisotropy of the intersystem crossing from the excited singlet-state precursor. Spectral analysis of the resulting enhanced absorptive and emissive EPR signals yields the zero-field splitting parameters, |D| and |E|, and the zero-field populations of the triplet at high accuracy. These parameters are sensitive probes for the protonation state of the flavin's isoalloxazine ring, as becomes evident by a comparison of the spectra recorded at different pH values of the solvent. The three protonation states of the flavins can furthermore be distinguished by the kinetics of the transient EPR signals, which are dominated by spin−lattice relaxation. The fastest decays are observed for the protonated FMN and riboflavin triplets, followed by the deprotonated flavin triplets. Slow decays are measured for the triplet states of neutral FMN and riboflavin. Because proton transfer is found to be slow on the time scale of spin-polarized triplet detection by transient EPR, the pH-dependent spin-relaxation and zero-field splitting parameters offer a novel approach to probe the protonation state of flavins in their singlet ground state through the characterization of their triplet-state properties.