NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • A Coarse-Grained Model for ...
    Yang, Shaorui; Cui, Zhiwei; Qu, Jianmin

    The journal of physical chemistry. B, 02/2014, Letnik: 118, Številka: 6
    Journal Article

    We present a coarse-grained model for molecular dynamics simulations of an epoxy system composed of epoxy phenol novolac as epoxy monomer and bisphenol-A as the cross-linking agent. The epoxy and hardener molecules are represented as short chains of connected beads, and cross-linking is accomplished by introducing bonds between reactive beads. The interbead potential, composed of Lennard-Jones, bond stretching, and angle bending terms, is parametrized through an optimization process based on a particle swarm optimization method to fit certain key thermomechanical properties of the material obtained from experiments and previous full atomistic simulations. The newly developed coarse-grained model is capable of predicting a number of thermomechanical properties of the epoxy system. The predictions are in very good agreement with available data in the literature. More importantly, our coarse-grained model is capable of predicting tensile failure of the epoxy system, a capability that no other conventional molecular dynamic simulation model has. Finally, our coarse-grained model can speed up the simulations by more than an order of magnitude when compared with traditional molecular dynamic simulations.