NUK - logo
E-viri
Recenzirano Odprti dostop
  • Evidence for a spinon Fermi...
    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H C; Steffens, P; Boehm, M; Hao, Yiqing; Quintero-Castro, D L; Harriger, L W; Frontzek, M D; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    Nature (London), 12/2016, Letnik: 540, Številka: 7634
    Journal Article

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO , which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.