NUK - logo
E-viri
Preverite dostopnost
  • Ring , Ludwig (Technische Universitat Munchen, Freising(Allemagne). Biotechnology of Natural Products); Yeh , Su-Ying (Technische Universität München, Freising(Allemagne). Biotechnology of Natural Products); Hücherig , Stephanie (Technische Universität München, Freising(Allemagne). Biotechnology of Natural Products); Hoffmann , Thomas (Technische Universität München, Freising(Allemagne). Biotechnology of Natural Products); Blanco-Portales , Rosario (Universidad de Cordoba(Espagne). Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales); Fouche , Mathieu (INRA , Villenave D'Ornon (France). UR 0419 Espèces Fruitières); Villatoro , Carmen (Universitat Autónoma de Barcelona, Barcelone(Espagne). Investigación y Tecnología Agroalimentarias, Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas-Investigación y Tecnología Agroalimentarias); Denoyes , Beatrice (INRA , Villenave D'OrnonVillenave D'Ornon (France). URUMR 04191332 Espèces FruitièresBiologie du Fruit et Pathologie); Monfort , Amparo (Universitat Autónoma de Barcelona, Barcelone(Espagne). Investigación y Tecnología Agroalimentarias, Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas-Investigación y Tecnología Agroalimentarias); Caballero , José-Luis (Universidad de Cordoba(Espagne). Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales); Muñoz-Blanco , Juan (Universidad de Cordoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales(Espagne).); Gershenson , Jonathan (Max Planck Institute for Chemical Ecology, Jena(Allemagne).); Schwab , Wilfried (Technische Universitat Munchen(Allemagne). Biotechnology of Natural Products)

    http://www.plantphysiol.org, 2013, Letnik: 1
    Publication

    Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm.