NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Light‐Responsive Biodegrada...
    Li, Chunxiao; Zhang, Yifan; Li, Zhiming; Mei, Enci; Lin, Jing; Li, Fan; Chen, Cunguo; Qing, Xialing; Hou, Liyue; Xiong, Lingling; Hao, Hui; Yang, Yun; Huang, Peng

    Advanced materials (Weinheim) 30, Številka: 8
    Journal Article

    Cancer nanotheranostics, integrating both diagnostic and therapeutic functions into nanoscale agents, are advanced solutions for cancer management. Herein, a light‐responsive biodegradable nanorattle‐based perfluoropentane‐(PFP)‐filled mesoporous‐silica‐film‐coated gold nanorod (GNR@SiO2‐PFP) is strategically designed and prepared for enhanced ultrasound (US)/photoacoustic (PA) dual‐modality imaging guided photothermal therapy of melanoma. The as‐prepared nanorattles are composed of a thin mesoporous silica film as the shell, which endows the nanoplatform with flexible morphology and excellent biodegradability, as well as large cavity for PFP filling. Upon 808 nm laser irradiation, the loaded PFP will undergo a liquid–gas phase transition due to the heat generation from GNRs, thus generating nanobubbles followed by the coalescence into microbubbles. The conversion of nanobubbles to microbubbles can improve the intratumoral permeation and retention in nonmicrovascular tissue, as well as enhance the tumor‐targeted US imaging signals. This nanotheranostic platform exhibits excellent biocompatibility and biodegradability, distinct gas bubbling phenomenon, good US/PA imaging contrast, and remarkable photothermal efficiency. The results demonstrate that the GNR@SiO2‐PFP nanorattles hold great potential for cancer nanotheranostics. A cancer‐theranostic nanorattle with excellent uniformity, biocompatibility, and biodegradability is prepared. Light‐responsive nanobubble generation allows ultrasound/photoacoustic dual‐modality imaging‐guided photothermal therapy of melanoma.