NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Insight into the Synergisti...
    Cheng, Xing; Ran, Fanmin; Huang, Yanfei; Zheng, Runtian; Yu, Haoxiang; Shu, Jie; Xie, Ying; He, Yan‐Bing

    Advanced functional materials, 05/2021, Letnik: 31, Številka: 19
    Journal Article

    Multi‐heteroatoms co‐doped carbon coating can significantly enhance the electronic conductivity and mass transfer rate of the electrode materials due to the synergistic effect. In this study N, S co‐doped carbon coating is introduced on the surface of niobium oxides (GNO@NSC) by using a convenient thiourea evaporation method. Theory calculations and experimental results confirm the synergistic effect of N, S co‐doping in GNO@NSC composite. N, S co‐doping not only enlarges the layer distance of the carbon materials but also leads to more activation sites for lithium storage; meanwhile, the introduction of the co‐doping carbon layer on GNO significantly enhances the bonding interaction with GNO, leading to excellent structural stability and conductivity of the composite. As a result, the GNO@NSC composite possesses excellent structural reversibility, a large specific capacity, and high‐rate performance. GNO@NSC nanowires deliver a highly reversible capacity of 288 mAh g–1 and display excellent cycling stability, and its capacity retention is 78.9% after 6000 cycles at a high current density of 1 A g–1. This study reveals the functional mechanism of N, S co‐doped carbon coating and the origin of performance improvement of niobium oxides, which can be used for reference to design and develop relevant materials. A nitrogen and sulfur co‐doped carbon coating can arouse synergistic effects to boost the electrochemical properties of a composite. Due to the strong bonding interaction, activation sites for lithium storage, large interlayer spacing, and stable structure in the nitrogen and sulfur co‐doped carbon layer, GNO@NSC displays superior rate performance, long cycling performance, and larger lithium‐ion diffusion coefficient.