NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Impact of natural organic m...
    Eitzen, Lars; Ruhl, Aki Sebastian; Jekel, Martin

    Science of the total environment, 06/2024, Letnik: 927
    Journal Article

    The orthokinetic coagulation of irregularly shaped polystyrene micro-particles (PS-MP) was investigated in solutions of inorganic cations with different valence (NaCl, CaCl2, LaCl3) using a coagulation jar test set-up combined with light extinction particle counting. The stabilizing effect of model natural organic matter (NOM from reverse-osmosis (RO-NOM), humic (HA) & fulvic acid (FA)) and of surface water components (SW-NOM) was studied. Collision efficiencies were calculated from the decrease in particle concentration applying first order reaction kinetics. The coagulation of PS-MP followed Derjaguin-Landau-Verwey-Overbeek (DLVO) theory with regard to ionic charge in solution. Highest collision efficiencies were obtained close to the suspected critical coagulation concentrations for CaCl2 (12 mM) and LaCl3 (5.5 mM) whereas for NaCl no CCC was found within the applied concentration range (10–1000 mM). The addition of NOM effectively stabilized PS-MP at low ionic strength (10 mM NaCl) in the order HA > RO-NOM > FA > SW-NOM at concentrations of dissolved organic carbon (DOC) as low as 0.2–0.5 mg/L DOC through electrostatic repulsion. PS-MP were effectively stabilized in 6.1 mg DOC/L of SW-NOM even at high ionic strength (100 mM MgCl2). Coagulation at intermediate ionic strength (10 mM MgCl2) was only observed for SW-NOM concentrations below 0.6 mg/L DOC. The results showed that even low NOM concentrations prevent PS-MP from orthokinetic coagulation in the presence of high ion concentrations. The study provides further insight in the orthokinetic coagulation behavior of PS-MP in the presence of NOM and highlights the importance of NOM for the stabilization of microplastics in aquatic suspensions. Further research is needed to elucidate the behavior of MP in turbulent systems to predict the mobility MP in aquatic systems such as rivers. Display omitted •Orthokinetic coagulation of polystyrene microparticles (PS-MP) was assessed.•Collision efficiencies were calculated to compare stabilization.•PS-MP were stabilized by natural organic matter (NOM) even at high ionic strength.•Stabilization differed between model and surface water NOM.