NUK - logo
E-viri
Recenzirano Odprti dostop
  • The oncometabolite 2-hydrox...
    Carbonneau, Mélissa; M Gagné, Laurence; Lalonde, Marie-Eve; Germain, Marie-Anne; Motorina, Alena; Guiot, Marie-Christine; Secco, Blandine; Vincent, Emma E; Tumber, Anthony; Hulea, Laura; Bergeman, Jonathan; Oppermann, Udo; Jones, Russell G; Laplante, Mathieu; Topisirovic, Ivan; Petrecca, Kevin; Huot, Marc-Étienne; Mallette, Frédérick A

    Nature communications, 09/2016, Letnik: 7, Številka: 1
    Journal Article

    The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway.