NUK - logo
E-viri
Recenzirano Odprti dostop
  • Global influences of the 18...
    Haigh, Ivan D.; Eliot, Matt; Pattiaratchi, Charitha

    Journal of Geophysical Research, June 2011, Letnik: 116, Številka: C6
    Journal Article

    Periods of high astronomically generated tides contribute to the occurrence of extreme sea levels. Over interannual time scales, two precessions associated with the orbit of the Moon cause systematic variation of high tides. A global assessment of when these tidal modulations occur allows for the prediction of periods when the enhanced risk of coastal flooding is likely in different parts of the world. This paper uses modeled tides to assess the influence of the 18.61 year lunar nodal cycle and the 8.85 year cycle of lunar perigee (which affects high tidal levels as a quasi 4.4 year cycle) on high tidal levels on a global scale. Tidal constituents from the TPXO7.2 global tidal model are used, with satellite modulation corrections based on equilibrium tide expectations, to predict multidecadal hourly time series of tides on a one‐quarter degree global grid. These time series are used to determine the amplitude and phase of tidal modulations using harmonic analysis fitted to 18.61, 9.305, 8.85, and 4.425 year sinusoidal signals. The spatial variations in the range and phase of the tidal modulations are related to the global distribution of the main tidal constituents and tidal characteristics (diurnal or semidiurnal and tidal range). Results indicate that the 18.61 year nodal cycle has the greatest influence in diurnal regions with tidal ranges of >4 m and that the 4.4 year cycle is largest in semidiurnal regions where the tidal range is >6 m. The phase of the interannual tidal modulations is shown to relate to the form of the tide. Key Points Interannual tidal modulations influence extreme sea levels and coastal flooding This paper maps the range and phase of the tidal modulations on a global scale Determine where the modulations contribute largest to high tidal levels