NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • BOLD matches neuronal activ...
    Siero, Jeroen C.W.; Hermes, Dora; Hoogduin, Hans; Luijten, Peter R.; Ramsey, Nick F.; Petridou, Natalia

    NeuroImage (Orlando, Fla.), 11/2014, Letnik: 101
    Journal Article

    High resolution BOLD fMRI has the potential to map activation patterns of small neuronal populations at the scale of cortical columns. However, BOLD fMRI does not measure neuronal activity, but only a correlate thereof, since it measures blood dynamics. To confirm that BOLD activation maps reflect neuronal population activity patterns, a direct comparison with neuro-electrophysiological data from the same cortical patch is necessary. Here, we compare BOLD activation patterns obtained with fMRI at 7T to electrophysiological patterns obtained with implanted high density electrocorticography (ECoG) grids in the same patch of human sensorimotor cortex, and with similar resolution (1.5mm). We used high spatially sampled high-frequency broadband (HFB) power from ECoG, which reflects local neuronal population activity. The spatial distribution of 7T BOLD activation matched the spatial distribution of ECoG HFB-power changes in the covered patch of sensorimotor cortex. BOLD fMRI activation foci were located within 1–3mm of the HFB-power ECoG foci. Both methods distinguished individual finger movement activation within a 1cm cortical patch, revealing a topographical medial to lateral layout for the little finger to index to thumb. These findings demonstrate that the BOLD signal at 7T is strongly correlated with the underlying electrophysiology, and is capable of discriminating patterns of neuronal population activity at a millimeter scale. The results further indicate the utility of 7T fMRI for investigation of intra-area organization of function and network dynamics. •7T BOLD fMRI and intracranial ECoG at same high resolution from the same individuals•Same finger-topography for BOLD and ECoG in a 1cm patch of primary motor cortex•BOLD activation foci were located within 1–3mm of the ECoG activation foci•BOLD activation strongly matched to neuronal processes at the millimeter scale