NUK - logo
E-viri
Recenzirano Odprti dostop
  • HINCUTs in cancer: hypoxia-...
    Ferdin, J; Nishida, N; Wu, X; Nicoloso, M S; Shah, M Y; Devlin, C; Ling, H; Shimizu, M; Kumar, K; Cortez, M A; Ferracin, M; Bi, Y; Yang, D; Czerniak, B; Zhang, W; Schmittgen, T D; Voorhoeve, M P; Reginato, M J; Negrini, M; Davuluri, R V; Kunej, T; Ivan, M; Calin, G A

    Cell death and differentiation, 12/2013, Letnik: 20, Številka: 12
    Journal Article

    Recent data have linked hypoxia, a classic feature of the tumor microenvironment, to the function of specific microRNAs (miRNAs); however, whether hypoxia affects other types of noncoding transcripts is currently unknown. Starting from a genome-wide expression profiling, we demonstrate for the first time a functional link between oxygen deprivation and the modulation of long noncoding transcripts from ultraconserved regions, termed transcribed-ultraconserved regions (T-UCRs). Interestingly, several hypoxia-upregulated T-UCRs, henceforth named 'hypoxia-induced noncoding ultraconserved transcripts' (HINCUTs), are also overexpressed in clinical samples from colon cancer patients. We show that these T-UCRs are predominantly nuclear and that the hypoxia-inducible factor (HIF) is at least partly responsible for the induction of several members of this group. One specific HINCUT, uc.475 (or HINCUT-1) is part of a retained intron of the host protein-coding gene, O-linked N-acetylglucosamine transferase, which is overexpressed in epithelial cancer types. Consistent with the hypothesis that T-UCRs have important function in tumor formation, HINCUT-1 supports cell proliferation specifically under hypoxic conditions and may be critical for optimal O-GlcNAcylation of proteins when oxygen tension is limiting. Our data gives a first glimpse of a novel functional hypoxic network comprising protein-coding transcripts and noncoding RNAs (ncRNAs) from the T-UCRs category.