NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • Posttranslational regulatio...
    Lossi, Laura; Gambino, Graziana; Ferrini, Francesco; Alasia, Silvia; Merighi, Adalberto

    Developmental neurobiology (Hoboken, N.J.), November 2009, Letnik: 69, Številka: 13
    Journal Article

    Apoptosis can be modulated by K+ and Ca2+ inside the cell and/or in the extracellular milieu. In murine organotypic cultures, membrane potential‐regulated Ca2+ signaling through calcineurin phosphatase has a pivotal role in development and maturation of cerebellar granule cells (CGCs). P8 cultures were used to analyze the levels of expression of B cell lymphoma 2 (BCL2) protein, and, after particle‐mediated gene transfer in CGCs, to study the posttranslational modifications of BCL2 fused to a fluorescent tag in response to a perturbation of K+/Ca2+ homeostasis. There are no changes in Bcl2 mRNA after real time PCR, whereas the levels of the fusion protein (monitored by calculating the density of transfected CGCs under the fluorescence microscope) and of BCL2 (inWestern blotting) are increased. After using a series of agonists/antagonists for ion channels at the cell membrane or the endoplasmic reticulum (ER), and drugs affecting protein synthesis/degradation, accumulation of BCL2 was related to a reduction in posttranslational cleavage by macroautophagy. The ER functionally links the K+e and Ca2+i to the BCL2 content in CGCs along two different pathways. The first, triggered by elevated K+e under conditions of immaturity, is independent of extracellular Ca2+ and operates via IP3 channels. The second leads to influx of extracellular Ca2+ following activation of ryanodine channels in the presence of physiological K+e, when CGCs are maintained in mature status. This study identifies novel mechanisms of neuroprotection in immature and mature CGCs involving the posttranslational regulation of BCL2. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009