NUK - logo
E-viri
Recenzirano Odprti dostop
  • Electronic metal-support in...
    Jackson, Colleen; Smith, Graham T; Inwood, David W; Leach, Andrew S; Whalley, Penny S; Callisti, Mauro; Polcar, Tomas; Russell, Andrea E; Levecque, Pieter; Kramer, Denis

    Nature communications, 06/2017, Letnik: 8, Številka: 1
    Journal Article

    Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.