NUK - logo
E-viri
Recenzirano Odprti dostop
  • New measurement of antineut...
    An, F P; Balantekin, A B; Band, H R; Bishai, M; Butorov, I; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, S M; Chen, Y; Cheng, Y P; Cherwinka, J J; Cummings, J P; Ding, X F; Ding, Y Y; Gonchar, M; Gong, G H; Grassi, M; Gu, W Q; Hackenburg, R W; Heeger, K M; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, T; Hu, W; Huang, E C; Hussain, G; Jaffke, P; Ji, X L; Jiao, J B; Kang, L; Lebanowski, L; Lee, J; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, W D; Li, X N; Li, X Q; Lin, C J; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, S S; Lu, H Q; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Park, J; Peng, J C; Qi, F Z; Raper, N; Ruan, X C; Shao, B B; Sun, J L; Tung, Y C; Wang, C H; Wang, M; Wang, N Y; Wang, W W; Wang, X; Wang, Z; Wang, Z M; Whisnant, K; White, C G; Worcester, E; Wu, Q; Xia, D M; Xia, X; Xing, Z Z; Xu, J L; Xu, J; Yan, J; Yeh, Y S; Yu, G Y; Zhang, C; Zhang, J W; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhong, W L; Zhou, L; Zhou, N; Zou, J H

    Physical review letters, 09/2015, Letnik: 115, Številka: 11
    Journal Article

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th}  ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3}  eV^{2} in the three-neutrino framework.