NUK - logo
E-viri
Recenzirano Odprti dostop
  • Performance characterizatio...
    Xu, S.Z.; Wang, R.Z.; Wang, L.W.; Zhu, J.

    Energy (Oxford), 01/2019, Letnik: 167
    Journal Article

    The composite sorbents of MgSO4-impregnated zeolite 13X and activated alumina are developed for thermal energy storage (TES) with different temperature ranges. The sorption and desorption characteristics of raw and MgSO4-impregnated activated alumina are studied, and the performances of the selected sorbents are tested in a closed-system TES device. The results are compared with those of raw and MgSO4-impregnated zeolite 13X. It is shown that the impregnated MgSO4 improves the overall TES performances of zeolite 13X and activated alumina. Compared to the raw host matrices, the impregnated MgSO4 remarkably accelerates the temperature-rising rate of zeolite 13X to about three times and improves the temperature lift of activated alumina by 32.5%. The experimental energy storage densities of MgSO4-impregnated zeolite 13X and activated alumina are 123.4 kWh m−3and 82.6 kWh m−3, respectively. The sorption temperature region of activated alumina is more aligned with the preferred hydration temperature of MgSO4 in comparison with zeolite 13X. The hydration characteristics of MgSO4 can resolve the solution leakage issue of open systems. Thermodynamic analysis is conducted to evaluate the performances of the TES device with different sorbents. It is found that entransy can be used to assess thermally and electrically driven TES systems reasonably. •MgSO4-impregnated zeolite 13X and activated alumina are developed and tested.•The impregnated MgSO4 improves the overall performances of the host matrices.•Sorption temperature of activated alumina is more suitable for hydration of MgSO4.•Hydration characteristics of MgSO4 can resolve solution leakage of open systems.•Entransy can assess thermally and electrically driven TES systems reasonably.