NUK - logo
E-viri
Recenzirano Odprti dostop
  • Topologically Entangled Ras...
    Zhang, Peng; Ma, J-Z; Ishida, Y; Zhao, L-X; Xu, Q-N; Lv, B-Q; Yaji, K; Chen, G-F; Weng, H-M; Dai, X; Fang, Z; Chen, X-Q; Fu, L; Qian, T; Ding, H; Shin, S

    Physical review letters, 01/2017, Letnik: 118, Številka: 4
    Journal Article

    We discover a pair of spin-polarized surface bands on the (111) face of grey arsenic by using angle-resolved photoemission spectroscopy (ARPES). In the occupied side, the pair resembles typical nearly-free-electron Shockley states observed on noble-metal surfaces. However, pump-probe ARPES reveals that the spin-polarized pair traverses the bulk band gap and that the crossing of the pair at Γover ¯ is topologically unavoidable. First-principles calculations well reproduce the bands and their nontrivial topology; the calculations also support that the surface states are of Shockley type because they arise from a band inversion caused by crystal field. The results provide compelling evidence that topological Shockley states are realized on As(111).