NUK - logo
E-viri
  • Observation of Scaling in t...
    Nicklas, E; Karl, M; Höfer, M; Johnson, A; Muessel, W; Strobel, H; Tomkovič, J; Gasenzer, T; Oberthaler, M K

    Physical review letters, 12/2015, Letnik: 115, Številka: 24
    Journal Article

    We report on the experimental observation of scaling in the time evolution following a sudden quench into the vicinity of a quantum critical point. The experimental system, a two-component Bose gas with coherent exchange between the constituents, allows for the necessary high level of control of parameters as well as the access to time-resolved spatial correlation functions. The theoretical analysis reveals that when quenching the system close to the critical point, the energy introduced by the quench leads to a short-time evolution exhibiting crossover reminiscent of the finite-temperature critical properties in the system's universality class. Observing the time evolution after a quench represents a paradigm shift in accessing and probing experimentally universal properties close to a quantum critical point and allows in a new way benchmarking of quantum many-body theory with experiments.