NUK - logo
E-viri
Celotno besedilo
  • Modeling neurocognitive rea...
    Santhanagopalan, Meena; Chetty, Madhu; Foale, Cameron; Aryal, Sunil; Klein, Britt

    Proceedings of the Australasian Computer Science Week Multiconference, 01/2018
    Conference Proceeding

    As a broader effort to build a holistic biopsychosocial health metric, reaction time data obtained from participants undertaking neurocognitive tests; have been examined using Exploratory Data Analysis (EDA) for assessing its distribution. Many of the known existing methods assume, that the reaction time data follows a Gaussian distribution and thus commonly use statistical measures such as Analysis of Variance (ANOVA) for analysis. However, it is not mandatory for the reaction time data, to necessarily follow Gaussian distribution and in many instances, it can be better modeled by other representations such as Gamma distribution. Unlike Gaussian distribution which is defined using mean and variance, the Gamma distribution is defined using shape and scale parameters which also considers higher order moments of data such as skewness and kurtosis. Generalized Linear Models (GLM), based on the family exponential distributions such as Gamma distribution, which have been used to model reaction time in other domains, have not been fully explored for modeling reaction time data in psychology domain. While limited use of Gamma distribution have been reported 5, 17, 21, for analyzing response times, their application has been somewhat ad-hoc rather than systematic. For this proposed research, we use a real life biopsychosocial dataset, generated from the 'digital health' intervention programs conducted by the Faculty of Health, Federation University, Australia. The two digital intervention programs were the 'Mindfulness' program and 'Physical Activity' program. The neurocognitive tests were carried out as part of the 'Mindfulness' program. In this paper, we investigate the participants' reaction time distributions in neurocognitive tests such as the Psychology Experiment Building Language (PEBL) Go/No-Go test 19, which is a subset of the larger biopsychosocial data set. PEBL is an open source software system for designing and running psychological experiments. Analysis of participants' reaction time in the PEBL Go/No-Go test, shows that the reaction time data are more compatible with a Gamma distribution and clearly demonstrate that these can be better modeled by Gamma distribution.