NUK - logo
E-viri
Celotno besedilo
Recenzirano
  • A novel pocket in 14-3-3[ep...
    Telles, Elphine; Hosing, Amol S; Kundu, Samrat T; Venkatraman, Prasanna; Dalal, Sorab N

    Experimental cell research, 05/2009, Letnik: 315, Številka: 8
    Journal Article

    Mitotic progression requires the activity of the dual specificity phosphatase, cdc25C. Cdc25C function is inhibited by complex formation with two 14-3-3 isoforms, 14-3-3epsilon and 14-3-3gamma. To understand the molecular basis of specific complex formation between 14-3-3 proteins and their ligands, chimeric 14-3-3 proteins were tested for their ability to form a complex with cdc25C in vivo. Specific complex formation between cdc25C and 14-3-3epsilon in vivo requires a phenylalanine residue at position 135 (F135) in 14-3-3epsilon. Mutation of this residue to the corresponding residue present in other 14-3-3 isoforms (F135V) leads to reduced binding to cdc25C and a decrease in the ability to inhibit cdc25C function in vivo. Similarly, F135V failed to rescue the incomplete S phase and the G2 DNA damage checkpoint defects observed in cells lacking 14-3-3epsilon. A comparative analysis of the 14-3-3 structures present in the database suggested that the F135 in 14-3-3epsilon was required to maintain the integrity of a pocket that might be involved in secondary interactions with cdc25C. These results suggest that the specificity of the 14-3-3 ligand interaction may be dependent on structural motifs present in the individual 14-3-3 isoforms. PUBLICATION ABSTRACT