NUK - logo
E-viri
Recenzirano Odprti dostop
  • Proteomics profiling identi...
    Johansson, Henrik J; Sanchez, Betzabe C; Forshed, Jenny; Stål, Olle; Fohlin, Helena; Lewensohn, Rolf; Hall, Per; Bergh, Jonas; Lehtiö, Janne; Linderholm, Barbro K

    Clinical proteomics, 03/2015, Letnik: 12, Številka: 1
    Journal Article

    Despite the success of tamoxifen since its introduction, about one-third of patients with estrogen (ER) and/or progesterone receptor (PgR) - positive breast cancer (BC) do not benefit from therapy. Here, we aim to identify molecular mechanisms and protein biomarkers involved in tamoxifen resistance. Using iTRAQ and Immobilized pH gradient-isoelectric focusing (IPG-IEF) mass spectrometry based proteomics we compared tumors from 12 patients with early relapses (<2 years) and 12 responsive to therapy (relapse-free > 7 years). A panel of 13 proteins (TCEAL4, AZGP1, S100A10, ALDH6A1, AHNAK, FBP1, S100A4, HSP90AB1, PDXK, GFPT1, RAB21, MX1, CAPS) from the 3101 identified proteins, potentially separate relapse from non-relapse BC patients. The proteins in the panel are involved in processes such as calcium (Ca(2+)) signaling, metabolism, epithelial mesenchymal transition (EMT), metastasis and invasion. Validation of the highest expressed proteins in the relapse group identify high tumor levels of CAPS as predictive of tamoxifen response in a patient cohort receiving tamoxifen as only adjuvant therapy. This data implicate CAPS in tamoxifen resistance and as a potential predictive marker.