NUK - logo
E-viri
Recenzirano Odprti dostop
  • An extension of Stanley's c...
    Nenasheva, M.; Zhukov, V.

    Discrete mathematics, November 2021, 2021-11-00, Letnik: 344, Številka: 11
    Journal Article

    Stanley's symmetrized chromatic polynomial is a generalization of the ordinary chromatic polynomial to a graph invariant with values in a ring of polynomials in infinitely many variables. The ordinary chromatic polynomial is a specialization of Stanley's one. To each orientable embedded graph with a single vertex, a simple graph is associated, which is called the intersection graph of the embedded graph. As a result, we can define Stanley's symmetrized chromatic polynomial for any orientable embedded graph with a single vertex. Our goal is to extend Stanley's chromatic polynomial to embedded graphs with arbitrary number of vertices, and not necessarily orientable. In contrast to well-known extensions of, say, the Tutte polynomial from abstract to embedded graphs 4, our extension is based not on the structure of the underlying abstract graph and the additional information about the embedding. Instead, we consider the binary delta-matroid associated to an embedded graph and define the extended Stanley chromatic polynomial as an invariant of binary delta-matroids. We show that, similarly to Stanley's symmetrized chromatic polynomial of graphs, which satisfies 4-term relations for simple graphs, the polynomial that we introduce satisfies the 4-term relations for binary delta-matroids 7. For graphs, Stanley's chromatic function produces a knot invariant by means of the correspondence between simple graphs and knots. Analogously we may interpret the suggested extension as an invariant of links, using the correspondence between binary delta-matroids and links.