NUK - logo
E-viri
Recenzirano Odprti dostop
  • TOI-1634 b: An Ultra-short-...
    Cloutier, Ryan; Charbonneau, David; Stassun, Keivan G.; Murgas, Felipe; Mortier, Annelies; Massey, Robert; Lissauer, Jack J.; Latham, David W.; Irwin, Jonathan; Haywood, Raphaëlle D.; Guerra, Pere; Girardin, Eric; Giacalone, Steven A.; Bosch-Cabot, Pau; Bieryla, Allyson; Winn, Joshua; Watson, Christopher A.; Vanderspek, Roland; Udry, Stéphane; Tamura, Motohide; Sozzetti, Alessandro; Shporer, Avi; Ségransan, Damien; Seager, Sara; Savel, Arjun B.; Sasselov, Dimitar; Rose, Mark; Ricker, George; Rice, Ken; Quintana, Elisa V.; Quinn, Samuel N.; Piotto, Giampaolo; Phillips, David; Pepe, Francesco; Pedani, Marco; Parviainen, Hannu; Palle, Enric; Narita, Norio; Molinari, Emilio; Micela, Giuseppina; McDermott, Scott; Mayor, Michel; Matson, Rachel A.; Martinez Fiorenzano, Aldo F.; Lovis, Christophe; López-Morales, Mercedes; Kusakabe, Nobuhiko; Jensen, Eric L. N.; Jenkins, Jon M.; Huang, Chelsea X.; Howell, Steve B.; Harutyunyan, Avet; Fűrész, Gábor; Fukui, Akihiko; Esquerdo, Gilbert A.; Esparza-Borges, Emma; Dumusque, Xavier; Dressing, Courtney D.; Fabrizio, Luca Di; Collins, Karen A.; Cameron, Andrew Collier; Christiansen, Jessie L.; Cecconi, Massimo; Buchhave, Lars A.; Boschin, Walter; Andreuzzi, Gloria

    The Astronomical journal, 08/2021, Letnik: 162, Številka: 2
    Journal Article

    Abstract Studies of close-in planets orbiting M dwarfs have suggested that the M-dwarf radius valley may be well explained by distinct formation timescales between enveloped terrestrials and rocky planets that form at late times in a gas-depleted environment. This scenario is at odds with the picture that close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by some thermally driven mass-loss process. These two physical scenarios make unique predictions of the rocky/enveloped transition’s dependence on orbital separation such that studying the compositions of planets within the M-dwarf radius valley may be able to establish the dominant physics. Here, we present the discovery of one such keystone planet: the ultra-short-period planet TOI-1634 b ( P  = 0.989 days, F = 121 F ⊕ , r p = 1.790 − 0.081 + 0.080 R ⊕ ) orbiting a nearby M2 dwarf ( K s  = 8.7, R s  = 0.450 R ⊙ , M s  = 0.502 M ⊙ ) and whose size and orbital period sit within the M-dwarf radius valley. We confirm the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of 4.91 − 0.70 + 0.68 M ⊕ , which makes TOI-1634 b inconsistent with an Earth-like composition at 5.9 σ and thus requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky composition that is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk composition of TOI-1634 b is inconsistent with that of Earth supports the gas-depleted formation mechanism to explain the emergence of the radius valley around M dwarfs with M s ≲ 0.5 M ⊙ .