NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • The unexpected radiative im...
    Sellitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bègue, N.; Blarel, L.; Jegou, F.; Khaykin, S.; Renard, J. -B.; Legras, B.

    Communications earth & environment, 11/2022, Letnik: 3, Številka: 1
    Journal Article

    Abstract The underwater Hunga Tonga-Hunga Ha-apai volcano erupted in the early hours of 15th January 2022, and injected volcanic gases and aerosols to over 50 km altitude. Here we synthesise satellite, ground-based, in situ and radiosonde observations of the eruption to investigate the strength of the stratospheric aerosol and water vapour perturbations in the initial weeks after the eruption and we quantify the net radiative impact across the two species using offline radiative transfer modelling. We find that the Hunga Tonga-Hunga Ha-apai eruption produced the largest global perturbation of stratospheric aerosols since the Pinatubo eruption in 1991 and the largest perturbation of stratospheric water vapour observed in the satellite era. Immediately after the eruption, water vapour radiative cooling dominated the local stratospheric heating/cooling rates, while at the top-of-the-atmosphere and surface, volcanic aerosol cooling dominated the radiative forcing. However, after two weeks, due to dispersion/dilution, water vapour heating started to dominate the top-of-the-atmosphere radiative forcing, leading to a net warming of the climate system.