NUK - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • An increase in the 12C + 12...
    Tumino, A.; Spitaleri, C.; La Cognata, M.; Cherubini, S.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Lamia, L.; Petrascu, H.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.; Trache, L.

    Nature (London), 05/2018, Letnik: 557, Številka: 7707
    Journal Article

    Carbon burning powers scenarios that influence the fate of stars, such as the late evolutionary stages of massive stars 1 (exceeding eight solar masses) and superbursts from accreting neutron stars2,3. It proceeds through the 12C + 12C fusion reactions that produce an alpha particle and neon-20 or a proton and sodium-23-that is, 12C(12C, α)20Ne and 12C(12C, p)23Na-at temperatures greater than 0.4 × 109 kelvin, corresponding to astrophysical energies exceeding a megaelectronvolt, at which such nuclear reactions are more likely to occur in stars. The cross-sections 4 for those carbon fusion reactions (probabilities that are required to calculate the rate of the reactions) have hitherto not been measured at the Gamow peaks 4 below 2 megaelectronvolts because of exponential suppression arising from the Coulomb barrier. The reference rate 5 at temperatures below 1.2 × 109 kelvin relies on extrapolations that ignore the effects of possible low-lying resonances. Here we report the measurement of the 12C(12C, α0,1)20Ne and 12C(12C, p0,1)23Na reaction rates (where the subscripts 0 and 1 stand for the ground and first excited states of 20Ne and 23Na, respectively) at centre-of-mass energies from 2.7 to 0.8 megaelectronvolts using the Trojan Horse method6,7 and the deuteron in 14N. The cross-sections deduced exhibit several resonances that are responsible for very large increases of the reaction rate at relevant temperatures. In particular, around 5 × 108 kelvin, the reaction rate is boosted to more than 25 times larger than the reference value 5 . This finding may have implications such as lowering the temperatures and densities 8 required for the ignition of carbon burning in massive stars and decreasing the superburst ignition depth in accreting neutron stars to reconcile observations with theoretical models 3 .